Harnack inequality and Hölder regularity estimates for a Lévy process with small jumps of high intensity

نویسنده

  • Ante Mimica
چکیده

We consider a Lévy process in Rd (d ≥ 3) with the characteristic exponent Φ(ξ) = |ξ|2 ln(1 + |ξ|2) − 1. The scale invariant Harnack inequality and apriori estimates of harmonic functions in Hölder spaces are proved. AMS Subject Classification: Primary 60J45, Secondary 60G50, 60G51, 60J25, 60J27

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compactness Methods for Hölder Estimates of Certain Degenerate Elliptic Equations

In this paper we obtain the interior C regularity of the quasilinear elliptic equations of divergence form. Our basic tools are the elementary local L estimates and weak Harnack inequality for second-order linear elliptic equations, and the compactness method.

متن کامل

Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps

We investigate the relationships between the parabolic Harnack inequality, heat kernel estimates, some geometric conditions, and some analytic conditions for random walks with long range jumps. Unlike the case of diffusion processes, the parabolic Harnack inequality does not, in general, imply the corresponding heat kernel estimates.

متن کامل

On a Class of Stochastic Differential Equations with Jumps and Its Properties

We study stochastic differential equations with jumps with no diffusion part. We provide some basic stochastic characterizations of solutions of the corresponding non-local partial differential equations and prove the Harnack inequality for a class of these operators. We also establish key connections between the recurrence properties of these jump processes and the non-local partial differenti...

متن کامل

Regularity of the Optimal Stopping Problem for Lévy Processes with Non-degenerate Diffusions

The value function of an optimal stopping problem for a process with Lévy jumps is known to be a generalized solution of a variational inequality. Assuming the diffusion component of the process is nondegenerate and a mild assumption on the singularity of the Lévy measure, this paper shows that the value function of problems on an unbounded domain with infinite activity jumps is W 2,1 p,loc . A...

متن کامل

Stochastic Differential Equations with Jumps

Gradient estimates and a Harnack inequality are established for the semigroup associated to stochastic differential equations driven by Poisson processes. As applications, estimates of the transition probability density, the compactness and ultraboundedness of the semigroup are studied in terms of the corresponding invariant measure.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010